Math 2D Multivariable MT 2 Sample Problems Aaron Chen

${ }^{* *}$ This is in no way indicative of the actual exam!!!**
These problems are just to test yourself with some problems that didn't come out of the book. I'm just using miscellaneous exams from other universities. A few of them are strange or difficult. They're intended mainly as thinking exercises - to think in different perspectives.
*Your best study materials are homeworks, quizzes, and Hamid's Practice Problems!

1. (a) What is $\frac{d}{d t} F\left(t, 3 t^{2}, 5\right)$? Here, F is a differentiable function of 3 variables. Express your answer in terms of the partial derivatives of F.
(b) Find the normal line to the surface $(x+y)^{3}-\left(y+z^{2}\right)^{5}=9$ at the point $(4,-2,1)$.
2. Find the maximum and minimum values of the function $\left(x^{2}+2 y^{2}\right)^{1 / 2}$ on the domain (it is a disk) $D=\left\{(x, y):(x-1)^{2}+y^{2} \leq 9\right\}$.
3. Let

$$
f(x, y)=\frac{x+y}{\sqrt{x^{2}+y^{2}}}, \quad(x, y) \neq(0,0)
$$

(a) Write the equation in polar coordinates.
(b) Does the limit as $(x, y) \rightarrow(0,0)$ of $f(x, y)$ exist? (Explain why or why not).
(c) Does the graph of f contain any straight lines? (Perhaps with a single point, namely the origin, missing). Explain why or why not.
4. Every equation of the form $a x^{2}+b y^{2}+c z^{2}=d$ where a, b, c, d are nonzero real numbers, will describe one of the following: A hyperboloid of one sheet, a hyperboloid of two sheets, a cone, or an ellipsoid, or an "empty" surface. Explain how to tell, given the numbers a, b, c, d what kind of surface it describes. (Mainly, when do we get the different hyperboloids, cones, and ellipsoids).
5. All I'm going to tell you about this differentiable function f on \mathbb{R}^{2} is that

$$
\nabla f(2,3)=<4,-1>, \quad f(2,3)=7
$$

Answer the following questions for which enough information is given, and explain why not enough information is given for the others.
(a) Is $(2,3)$ a local maximum, a local minimum, or neither, for f ?
(b) Find the best approximation you can for $f(2.04,2.99)$. (It may help to do this after part (c)).
(c) There's one point on the graph of f where we have enough information to find the equation of the tangent plane. What are the coordinates of that point? What is the tangent plane's equation?
(d) Is $f(2,4) \geq 7$?
(e) Find $g^{\prime}(1)$ where $g(t)=f\left(2 t^{3}, t^{3}\right)$.
6. Show that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{x+2 y-3}{x+y-2}
$$

Hint: It may help to rewrite this problem as a limit to the origin by translating the variables x, y.
7. Suppose for some function $f(x, y)$ we have that

$$
f_{x}=\frac{\partial f}{\partial x}=\frac{1}{x}, \quad f_{y}=\frac{\partial f}{\partial y}=\frac{1}{y} .
$$

Let $x=r \cos \theta, y=r \sin \theta$. Calculate $\partial f / \partial r$ and $\partial f / \partial \theta$.
8. (a) Sketch the surface $x^{2}+(y-1)^{2}=z^{2}$.
(b) Find the tangent plane at $(4,4,5)$.
9. Find the maximum and minimum values of the function $f(x, y)=(x-1)^{2}+(y-1)^{2}$ on the unit disk $x^{2}+y^{2} \leq 1$.
10. Let $f(t)=<3 t^{2}, 2 t^{3}>$. Find the length of $f(t)$ between $0 \leq t \leq 2$.
11. Consider the function $f(x, y)=x^{4}+y^{4}+x^{2} y^{2}-x y+3$. Find the direction of steepest descent from the point $(1,2)$. (Not part of the question, but: What is the rate of descent?)
12. Suppose we are given $z^{2}+4 x+4 y^{2}-24 y=x^{2}+2 z$. Convert this to the standard form of a quadratic surface. What kind of surface is it? Sketch it.
13. Calculate the arclength of the curve

$$
r(t)=<2 t^{3} / 3+1 / 3, t+7, t^{2}+1>, \quad-1 \leq t \leq 2 .
$$

14. What I had intended for Morning Quiz 4: Determine if the following limit exists,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2}(y)}{x^{2}+2 y^{2}} .
$$

15. Combining my failed Morning Quiz 4 and Afternoon Quiz 4: Determine the set of points that f is continuous, where

$$
f(x, y)= \begin{cases}\frac{x^{2} \tan ^{2}(y)}{x^{3}+2 y^{3}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

16. See problems from Sections $13.1,2,4$ and 14.1 as those were not touched upon too much.
